Masticatory muscle myositis is an autoimmune, focal inflammatory myopathy with clinical signs restricted to the muscles of mastication (Figure 1), including the temporalis, masseter, pterygoid, and rostral digastricus, all of which are innervated by the mandibular branch of the trigeminal nerve.1,2 The limb muscles are typically spared. Autoantibodies against masticatory muscle type 2M fibers are associated with masticatory muscle myositis and are useful in the diagnosis.3–5 This disease has historically been called eosinophilic myositis or atrophic myositis. Although these names suggest a different pathogenesis, they likely represent the acute and chronic phases of masticatory muscle myositis.6 The acute phase is characterized clinically by jaw pain, trismus (i.e., inability to open the jaw), and swelling, and the chronic phase is characterized by marked muscle atrophy. Without early recognition and aggressive treatment, myofiber loss and muscle fibrosis may result in irreversible jaw dysfunction and severe muscle atrophy.

Although masticatory muscle myositis was once believed to be a form of polymyositis, further investigation has demonstrated that the disease represents a very unique myopathy. Initial studies comparing limb and masticatory muscle fibers demonstrated a significant difference in their fiber types.7 Although limb and masticatory muscles are both composed of type 1 and 2 fibers, limb muscle contains type 1A...
Masticatory muscle myositis represents a targeted autoimmune process. Immunocytochemical staining using staphylococcal protein-A horseradish peroxidase conjugates have confirmed the presence of circulating and fixed antibodies (i.e., IgG) in approximately 85% of dogs with masticatory muscle myositis. It remains unknown what initiates formation of autoantibodies or why they are directed specifically against type 2M fibers. Some theories suggest that molecular mimicry may play a role, with antibodies or T cells generated in response to an infectious agent that subsequently cross-reacts with self-antigens. In this scenario, bacterial antigens would have a similar peptide sequence or conformational structure to some component of the 2M myofibers. Antibodies directed against these bacterial antigens could potentially cross-react with these myofibers. There is precedent for this in the human literature because autoantibodies directed at Streptococcus pyogenes have been documented to attack cardiac and skeletal muscle. Other human diseases, such as peri-

Differential Diagnosis for Inflammatory Myopathy (Myositis)

<table>
<thead>
<tr>
<th>Generalized Inflammatory Myopathy/Polymyositis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious</td>
</tr>
<tr>
<td>Leptospirosis</td>
</tr>
<tr>
<td>Toxoplasmosis</td>
</tr>
<tr>
<td>Neosporosis</td>
</tr>
<tr>
<td>Leishmaniasis</td>
</tr>
<tr>
<td>Hepatocoonosis</td>
</tr>
<tr>
<td>Rickettsia spp infection</td>
</tr>
<tr>
<td>Dirofilaria immitis infection</td>
</tr>
<tr>
<td>Clostridia spp infection</td>
</tr>
<tr>
<td>Immune mediated</td>
</tr>
<tr>
<td>Systemic lupus erythematous</td>
</tr>
<tr>
<td>Other connective tissue diseases</td>
</tr>
<tr>
<td>Drugs/toxins (e.g., cimetidine, trimethoprim–sulfadiazine, penicillamines)</td>
</tr>
<tr>
<td>Paraneoplastic/metastatic neoplasia</td>
</tr>
<tr>
<td>Thymoma</td>
</tr>
<tr>
<td>Lymphoma</td>
</tr>
<tr>
<td>Idiopathic disease</td>
</tr>
<tr>
<td>Focal Inflammatory Myopathy</td>
</tr>
<tr>
<td>Masticatory muscle myositis</td>
</tr>
<tr>
<td>Extraocular muscle myositis</td>
</tr>
</tbody>
</table>

(i.e., slow twitch) and 2A (i.e., fast twitch) fibers, whereas masticatory muscle is composed of type 2M fibers and a type 1 fiber variant. Biochemical studies evaluating myosin isoforms by electrophoretic procedures demonstrated differences between limb muscle, fetal muscle, and masticatory muscle myosins. This unique type 2M myofiber isoform is likely related to the different motor nerve branches that develop during embryologic development.

Researchers using immunocytochemical procedures documented autoantibodies against type 2M fibers in dogs with masticatory muscle myositis. More important, these antibodies were not reactive with any other muscle groups or found in any other muscle diseases, such as polymyositis, other polymyopathies, or differently cross-react with self-antigens. In this scenario, bacterial antigens would have a similar peptide sequence or conformational structure to some component of the 2M myofibers. Antibodies directed against these bacterial antigens could potentially cross-react with these myofibers. There is precedent for this in the human literature because autoantibodies directed at *Streptococcus pyogenes* have been documented to attack cardiac and skeletal muscle. Other human diseases, such as peri-

The serum 2M antibody test is both highly sensitive (85% to 90%) and specific (100%) and is a preferred diagnostic test for masticatory muscle myositis.
Figure 2. Acute phase of masticatory muscle myositis.

Figure 3. Muscle atrophy in a patient with masticatory muscle myositis.

carditis and rheumatoid arthritis, have been characterized by autoantibodies directed at specific myofibers.¹

DIAGNOSIS

The classical clinical presentation for masticatory muscle myositis is inability to open the jaw (trismus), jaw pain, and swelling or atrophy of the muscles of mastication. The average age of onset for masticatory muscle myositis is 3 years of age, although patients have reportedly been as young as 4 months of age.⁹ The disease can occur in any breed, but there may be a predilection for large-breed dogs, with overrepresented breeds including German shepherds, Labrador retrievers, Doberman pinschers, and golden retrievers. Cavalier King Charles spaniels appear to have a genetic predisposition to masticatory muscle myositis.¹⁰ No gender predilection has been found.⁴

Complete physical and neurologic examinations are important to confirm that clinical signs are restricted to the muscles of mastication. Corticosteroid therapy can result in atrophy of the masticatory muscles; therefore, this should be considered in the initial evaluation. Patients should also be closely examined for evidence of trauma that could have resulted in a mandibular fracture or temporomandibular joint luxation or subluxation. Thorough oral examinations should be performed but often require heavy sedation or anesthesia. Retrobulbar masses, which may result in trismus, may cause visible swelling or drainage behind the carnassial teeth. Relatively rapid atrophy of the masticatory muscles can result from any disease that affects the trigeminal nerve, especially trigeminal neuritis and peripheral nerve sheath tumors. However, patients with trigeminal neuritis are generally nonpainful and demonstrate normal to flaccid jaw tone.

Patients presenting in the acute phase demonstrate trismus and swollen, painful masticatory muscles (Figure 2). Clinical signs are usually bilateral but may appear to be unilateral in some cases if one side is more severely
PERCORTEN\textregistered-V \\
(Desoxycorticosterone pivalate)

Injectable Suspension

Caution: Federal (U.S.A.) law restricts this drug to use by or on the order of a licensed veterinarian.

Indications: For use as replacement therapy for the mineralocorticoid deficit in dogs with primary adreno-
corticosteroid deficiency.

Effectiveness: Results of two 75-day clinical studies in dogs with primary hypoadrenocorticism, each treated with three doses of PERCORTEN-V, demonstrated return to normal sodium/potassium ratios in 96% of dogs in one study and 100% of dogs in the other study. See the full product insert for more information.

Description: The active ingredient in PERCORTEN-V is desoxycorticosterone pivalate (DOCP). It is a min-
eralocorticoid hormone and an analog of desoxycorticoste-
ronone. Its effects are dependent on a functioning
kidney. Animals suffering from hypovolemia, pre-renal
azotemia, and inadequate tissue perfusion must be
rehydrated with intravenous fluid (saline) therapy
before starting PERCORTEN-V therapy. Primary
renal disease should be ruled out before starting
PERCORTEN-V therapy.

Warnings: Do not use this drug in pregnant dogs. Do
not use in dogs suffering from congestive heart disease,
severe renal disease or edema.

Keep this and all drugs out of the reach of children.

In case of human consumption, contact a physician or
Poison Control Center immediately.

Precautions: Some patients are more sensitive to the
actions of PERCORTEN-V and may exhibit side
effects in an exaggerated degree. Some patients may
show signs of hyperkalemia or hypokalemia. The dosage of
PERCORTEN-V should be reduced in these patients.

Like other adrenocortical hormones, PERCORTEN-V
may cause severe side effects if dosage is too high or
prolonged. It may cause polyuria, polydipsia, increased
blood volume, edema and cardiac enlargement.

Excessive weight gain may indicate fluid retention
secondary to sodium retention. PERCORTEN-V
should be used with caution in patients with congestive
heart disease, edema or renal disease.

Adverse Reactions: The following adverse reactions have been reported following the use of
PERCORTEN-V: depression, polyuria, polydipsia,
atropexia, skin and coat changes, diarrhea, vomiting,
weakness, weight loss, incontinence, pain on injection,
and injection site abscess. Some of these effects may
resolve with adjustments in dose or interval of
PERCORTEN-V or concomitant glucocorticoid med-
ication.

Safety: PERCORTEN-V was administered to healthy
Beagles at 0, 2.2, 6.6 or 11 mg/kg of body weight daily
over a consecutive 3-day period every 28 days (equiv-
alent to a cumulative monthly dosage of 0, 6.6, 19.8 or
33 mg/kg) for 6 months. This resulted in no mortality or
any significant effects on body weight, food con-
sumption, and ophthalmic observations at any dose
level. However, polyuria and polydipsia were noted and
corticoconcentrate decreased (14.89 mg/dl) in the 1X, 1X
and 5X groups. Glomerulonephropathy was only observed in the kidneys when PERCORTEN-
V was administered at 6.6 mg/kg or higher.

PERCORTEN-V was well tolerated when administered at 2.2 mg/kg on three consecutive days in every 28-day
period for six months.

Dosage and Administration: PERCORTEN-V suspen-
sion is to be injected intramuscularly. Care should be used to prevent inadvertent intravenous injection,
which may cause acute collapse and shock. PER-
CORTEN-V only replaces mineralocorticoid hor-
mones. Glucocorticoid replacement must be supplied by small daily doses of glucocorticoid hormones (e.g.,
prednisone or prednisolone) (0.2-0.4 mg/kg/day).

Failure to administer glucocorticoids is the most com-
mon reason for treatment failure. Animals receiving
PERCORTEN-V do not require oral salt supplementa-
tion. Dosage requirements must be individualized based on patient’s response to therapy. Begin treatment with
PERCORTEN-V at a dose of 1.0 mg per pound of body weight every 23 days. In some patients the dose
may be reduced. Serum sodium and potassium levels should be monitored to assure the animal is properly
compensated. Most patients are well controlled with a dose range of 0.75 to 1.0 mg per pound of body weight, given every 21 to 30 days. See the full product insert for more information.

How Supplied: Multiple-Dose vials, packed one vial per carton.

Manufactured for: Novartis Animal Health US, Inc.
Greeensboro, NC 27408, USA
NADA 141-029 Approved by FDA
©2004 Novartis Animal Health US, Inc.
PERCORTEN-V is a registered trademark of Novartis AG.
NAH-PER-VB/3 03/04

Although masticatory muscle myositis may affect any canine breed, young large-breed dogs may be predisposed.

Differentials and Diagnostic Tests

Initial diagnostic testing should include a complete blood count and serum chemistry profile, including a creatine kinase (CK) level. Biochemical changes that have been documented in patients with masticatory muscle myositis include hyperglucinemia, mild anemia, and proteinuria.9 Although peripheral eosinophilia has been reported, it has not been a consistent clinicopathologic finding. CK levels are frequently elevated during the acute phase but are often normal as the disease becomes more chronic. The degree of enzyme elevation, if present, is relatively less than that in patients with polymyositis because of the smaller muscle mass affected.13 A confirmatory blood test for circulating antibodies against masticatory mus-

http://medicine.ucsd.edu/vet_neuromuscular). The immunocytochemical test, which has proven highly specific (100%) and sensitive (85% to 90%),4 has largely been replaced by an ELISA-based test with equal specificity and sensitivity (Figure 4).

Clinical signs compatible with masticatory muscle myositis and positive results from a 2M antibody test confirm the diagnosis. However, false negatives may occur if immunosuppressive dosages of corticosteroids have been administered for 7 to 10 days before testing and in end-stage masticatory muscle myositis with loss of myofibers and fibrosis. Patients with polymyositis test negative for antibodies against type 2M fibers. A muscle biopsy is necessary to confirm a diagnosis of polymyositis.
Because of the numerous causes associated with jaw pain and trismus (see box on this page), additional diagnostics are warranted before initiating immunosuppressive therapy for masticatory muscle myositis. Other procedures that may aid in diagnosing masticatory muscle myositis include radiology and advanced imaging, electrodiagnostics, and histologic evaluation of biopsy specimens. Skull radiographs or computed tomograms should be obtained while patients are under general anesthesia. One classic finding in masticatory muscle myositis is the inability to open the jaw under anesthesia. Other abnormalities, such as fusion of the temporomandibular joints or healed fractures, may result in similar findings but should be eliminated from the differential diagnosis by the imaging studies.

Electromyography (EMG) may be a useful diagnostic procedure, particularly in differentiating masticatory muscle myositis from polymyositis. Electromyographic abnormalities seen with myopathic disease include fibrillation potentials, positive sharp waves, and complex repetitive discharges. In masticatory muscle myositis, spontaneous activity is specifically found only in the masticatory muscles compared with polymyositis, in which spontaneous activity is present throughout multiple muscles. Abnormalities may be severe during the acute phase of the disease. However, EMG results may be normal in patients with end-stage disease because of severe atrophy or loss of muscle fibers and fibrosis. In these patients, the only change evident may be decreased insertional activity due to loss of muscle fibers. It is also important to recognize that EMG changes are nonspecific and cannot be used to differentiate between neuropathic and myopathic causes. EMG is usually performed under general anesthesia. CK levels should be obtained before testing because inserting EMG needles transiently elevates CK values.

Evaluating a muscle biopsy can also provide diagnostic confirmation of the disease as well as additional information regarding prognosis, particularly when muscle atrophy is present and significant fibrosis is sus-

Differential Diagnosis for Trismus

- Masticatory muscle myositis
- Polymyositis (pain and reluctance to open the jaw, but not actual trismus)
- Temporomandibular joint luxation, subluxation, or fusion from chronic joint disease
- Tetanus
- Craniomandibular osteopathy
- Retrobulbar abscess
- Extraocular myositis (referred jaw pain)
- Muscular dystrophy
- Foreign body
DERAMAXX Tablets

Contraindications: DERAMAXX tablets are contraindicated for the control of pain and inflammation associated with osteoarthritis in dogs four pounds body weight or greater, and for the control of pain and inflammation associated with osteoarthritides in dogs.

Warnings: Not for use in humans. Keep this and all medications out of reach of children. Consult a physician in case of accidental ingestion by humans. For use in dogs only.

Adverse Reactions: In placebo-controlled field study of postoperative orthopedic pain, involving 207 patients receiving adjunctive therapy. Sensitivity to drug-associated adverse events varies with the individual patient. As a class, NSAIDs may be associated with gastrointestinal and renal toxicity. Patients at greatest risk for NSAID toxicity are those that are dehydrated, on concomitant diuretic therapy, or those with existing renal, cardiovascular, and/or hepatic dysfunction. Since many NSAIDs possess the potential to produce gastrointestinal ulceration, concomitant use of DERAMAXX tablets with other anti-inflammatory drugs, such as NSAIDs or corticosteroids, should be avoided or closely monitored.

Precautions: The safety of DERAMAXX tablets in breeding, pregnant, or lactating dogs has not been evaluated. Studies to determine the activity of DERAMAXX tablets when administered concomitantly with other protein-bound drugs have not been conducted in dogs. Drug compatibility should be monitored in patients receiving additive therapy.

In placebo-controlled field study of osteoarthritis involving 209 dogs dosed for 43 days, the following adverse reactions were reported:

<table>
<thead>
<tr>
<th>Clinical Observation</th>
<th>DERAMAXX tablets</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vomiting</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Melaena</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anorexia</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incision site lesion (drainage, oozeing)</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Non-incision Skin Lesions (moist dermatitis, pyoderma)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Urticaria</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Positive joint culture</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Phlebitis</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hematuria</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Conjunctivitis</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Splenomegaly</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hepatomegaly</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Death</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

*Dogs may have experienced more than one of the observations during the study.

**This table does not include one dog that was dosed at 16.92 mg/kg/day for the study duration. Beginning on the last day of treatment, this dog experienced vomiting, diarrhea, increased water intake and decreased appetite. Hematological and clinical chemistry values were unremarkable. The dog recovered uneventfully within 3 days of cessation of dosing.

In placebo-controlled field study of osteoarthritis involving 209 dogs dosed for 43 days, the following adverse reactions were reported:

<table>
<thead>
<tr>
<th>Clinical Observation</th>
<th>DERAMAXX tablets</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vomiting</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Diarrhea/Soft Stool</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Weight Loss</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Abdominal Pain (.splitting)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Seizure</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lethargy</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pyoderma/Dermatitis</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unilateral Conjunctivitis</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Scleral Injection</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hematuria/HTN</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Splenomegaly</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Grade II Mural Syntonic</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(1) Dogs may have experienced more than one of the observations during the study.

**This dog was less active and eating less on enrollment, with elevated WBC, amylase, and AST and died 1 month after exiting the study. The dog was withdrawn from the study on Day 17 with anorexia, lethargy and a suspicion of diarrhea. Follow-up laboratory analyses revealed hypoalbuminemia, hyperphosphatemia, decreased BUN, icterus, ascites, pancreatitis, and decreased or increased total protein and globulin, decreased albumin, decreased BUN, citrus, ascorate, pancreatitis.

Post Approval Experience: The following adverse reactions are based on voluntary post-approval reporting. The categories are listed in decreasing order of frequency by body system.

Gastrointestinal: vomiting, anorexia, diarrhea, melena, hematemesis, hematochezia, weight loss, nausea, gastrointestinal ulceration, gastrointestinal perforation, salivation. Hematological: anemia, thrombocytopenia. Hepatic: hepatic enzyme elevations, decreased or increased total protein and globulin, decreased albumin, decreased BUN, citrus, ascorate, pancreatitis. Neurological/Behavioral/Special Sense: lethargy, weakness, seizure, ataxia, aggression, tremor, glazed eyes, uveitis, mydriasis, nystagmus. Urological: azotemia, polypnea, polyuria, urinary tract infection, hematuria, urinary incontinence, renal failure. Cardiovascular/Respiratory: tachypnea, bradycardia, coughing. Dermatological/Immunological: fever, facial/muzzle edema, pruritis, urticaria, moist dermatitis. In rare situations, death has been reported as an outcome of the adverse events listed above. For technical assistance or to report suspected adverse events, call 1-800-332-2761.

©2004 Novartis Animal Health US, Inc.

DERAMAXX® (deracoxib) is a registered trademark of Novartis AG. NDA/DER-T-P00A/BS/4 11/03

Figure 5. Biopsies are obtained from the temporalis muscle. Care should be taken not to biopsy the frontalis muscle, which overlies the temporalis, because it is not affected in masticatory muscle myositis. (Illustrated by Felicia Paras)
TREATMENT

A favorable outcome in masticatory muscle myositis necessitates early accurate diagnosis and appropriate therapy. Treatment is centered on aggressive immunosuppression, which is generally achieved by corticosteroid administration. The cornerstone of therapy is prednisone at 2 mg/kg PO bid during the acute phase. This dose should be maintained until maximum jaw function has been regained and CK levels have returned to normal. At that time, prednisone can be slowly tapered to the lowest every-other-day dose that abates clinical signs. This process should generally occur slowly over 4 to 6 months, with no more than a 50% decrease in the dose every month. After several months of decreasing the dose of prednisone, the minimal maintenance dose that abates clinical signs can be established. Although many patients require this maintenance dose for a lifetime, others can ultimately discontinue all therapy. While tapering prednisone, clinicians are advised to observe patients for relapses in clinical signs. This process should generally occur slowly over 4 to 6 months, with no more than a 50% decrease in the dose every month. After several months of decreasing the dose of prednisone, the minimal maintenance dose that abates clinical signs can be established. Although many patients require this maintenance dose for a lifetime, others can ultimately discontinue all therapy. While tapering prednisone, clinicians are advised to observe patients for relapses in

Patients with masticatory muscle myositis have a rigid jaw tone, whereas patients with trigeminal neuritis usually have a flaccid jaw tone.

show characteristic changes, it is important to recognize that inflammatory infiltrates can have a patchy distribution and may be missed on single biopsy specimens. Muscle biopsies obtained in the acute phase usually demonstrate a mixed inflammatory cell population, with infiltration of nonnecrotic fibers by lymphocytes and plasma cells, as well as myofiber necrosis and phagocytosis (Figure 6). Contrary to the previous nomenclature of eosinophilic myositis, eosinophils are not the predominant cell type in most muscle specimens and may not even be present. In end-stage masticatory muscle myositis, the predominant pathologic change is replacement of muscle fibers with fibrous connective tissue, few remaining muscle fibers, and minimal cellular infiltration (Figure 7).

If signs of systemic illness are present in a patient with generalized inflammatory myopathy, antibody titers for infectious diseases (i.e., ehrlichiosis, toxoplasmosis, neosporosis, leishmaniasis, other agents) should be obtained and a search conducted to detect other underlying autoimmune diseases.

Figure 6. Fresh-frozen hematoxylin and eosin–stained muscle biopsy specimens from the temporalis muscle of dogs.

Note the endomysial, perimysial, and perivascular distribution of the mononuclear cell infiltration in this biopsy specimen from a dog with masticatory muscle myositis.

Biopsy specimen from a normal dog.
clinical signs, which may signify a need for increased immunosuppression. Although low-dose alternate-day therapy is generally well tolerated, long-term prednisone may result in iatrogenic hyperadrenocorticism and susceptibility to infections. Owners should be prepared for resultant polyuria, polydipsia, and polyphagia associated with prednisone administration as well as the potential for steroid-induced gastric ulcers. In addition, corticosteroid therapy alone can result in masticatory muscle atrophy. If the side effects of prednisone therapy cannot be tolerated, alternative immunosuppressive agents may be used.

Azathioprine is another immunosuppressive drug that can be considered in addition to traditional corticosteroid therapy. Although azathioprine is generally not included in the initial therapy for masticatory muscle myositis, it can be used in conjunction with prednisone in patients that are unable to tolerate the side effects of corticosteroids or are refractory to prednisone therapy alone. Azathioprine should be dosed at 2 mg/kg PO q24–48h and continued over several months while prednisone is slowly tapered to a maintenance dose. Thereafter, azathioprine may be slowly tapered as long as the patient does not experience a relapse. Side effects associated with azathioprine include bone marrow suppression and hepatotoxicity. Therefore, regular evaluations of the complete blood count and hepatic enzymes are warranted. Cyclosporine is another immunosuppressive drug that may be used adjunctively; however, its use requires extensive therapeutic monitoring. Colchicine has also been proposed as being potentially useful because of its reported antifibrotic properties in liver disease. However, colchicine has never been proven to have antifibrotic properties in skeletal muscle.

If untreated or treated inappropriately, the acute phase will progress to the chronic phase. A common problem in treating masticatory muscle myositis is using an inadequate dose of corticosteroids for too short a time. It is common for masticatory muscle myositis to respond initially to therapy, but relapses usually occur quickly if treatment is discontinued prematurely. The chronic phase is marked by severe muscle atrophy resulting from gradual replacement of muscle fibers with fibrous tissue. Corticosteroids may prove helpful in the chronic phase, although lower doses are recommended. The clinical application of corticosteroids in the chronic phase is based on the belief that therapy may reduce further fibrosis.

Patients experiencing significant trismus may require gruel diets to maintain adequate nutritional intake. Patients can also be encouraged to chew toys or bones to promote use of their masticatory muscles. The literature has historically recommended forcible opening of the jaw while patients are under anesthesia. Studies have found significant morbidity, including temporomandibular joint luxation and mandibular fractures, associated with this procedure, without documented improvement in clinical outcome afterward. Therefore, manual retraction of the jaw is strictly contraindicated.
Tri-Heart Plus Chewable Tablets

Brief Summary: Please consult full package insert for more information.

INDICATIONS: Tri-Heart Plus chewable tablets are indicated for use in prevention of canine heartworm caused by *Dirofilaria immitis* and for the treatment and control of ascarids (*Toxocara canis*, *Toxascaris leonina*) and hookworms (*Ancylostoma caninum*, *Uncinaria stenocephala*, *Ancylostoma braziliense*) in dogs and in puppies six weeks of age.

PRECAUTIONS: All dogs should be tested for existing heartworm infection before starting treatment with Tri-Heart Plus chewable tablets. A mild hypersensitivity-type reaction, presumably due to dead or dying microfilariae and particularly involving a transient diarrhea has been observed in clinical trials with ivermectin alone after treatment of some dogs that have circulating microfilariae.

Keep this and all drugs out of the reach of children. In case of ingestion by humans, clients should be advised to contact a physician immediately. Physicians may contact a Poison Control Center for advice concerning cases of ingestion by humans.

ADVERSE REACTIONS: The following adverse reactions have been reported following the use of ivermectin at the recommended dose: depression/lethargy, vomiting, anorexia, diarrhea, mydriasis, ataxia, staggering, convulsions and hypersalivation.

Caution: Federal (U.S.A.) law restricts this drug to use by or on the order of a licensed veterinarian.

HOW SUPPLIED: Tri-Heart Plus chewable tablets are available in three dosage strengths for dogs of different weights. Each strength comes in convenient packs of 6 chewable tablets.

Store at controlled room temperature of 59-86 °F (15-30 °C). Protect product from light.

For technical assistance, call Schering-Plough Animal Health Corp. 1-800-224-5318

Manufactured for: Schering-Plough Animal Health Corp., Union NJ 07083

Manufactured by: Heska Corporation, Fort Collins, CO 80525 Made in USA ©2003 Heska Corporation, 27499708, ANADA 200-338, Approved by FDA Tri-Heart is a registered trademark of Schering-Plough Veterinary Corporation.

PROGNOSIS

The prognosis is determined by the degree of fibrosis present and the clinical response to immunosuppression. Aggressive treatment during the acute phase generally results in a good prognosis. Patients may ultimately develop muscle atrophy but often experience partial to complete remission. It is important to remember that corticosteroids alone can cause muscle atrophy and, therefore, progressive atrophy may not be indicative of worsening disease. Treatment failure and relapses usually result from inadequate immunosuppression and hasty discontinuation of corticosteroids. It is essential that patients be treated aggressively because evidence shows that patients that relapse are less likely to experience remission in the future. Patients treated in the chronic phase of the disease carry a more uncertain prognosis but can do well if extensive fibrosis does not result in persistent jaw dysfunction. Clients must be informed that jaw function may be improved but not normalized and muscle atrophy may be persistent.

Muscle biopsy is critical in determining long-term prognosis.

REFERENCES

1. Masticatory muscle myositis is an inflammatory myopathy directed at type ____ muscle fiber.
 a. 1
 b. 2A
 c. 2B
 d. 2M

2. _______ dogs are most commonly affected by masticatory muscle myositis.
 a. Young large-breed
 b. Young small-breed
 c. Old large-breed
 d. Old small-breed

3. What percentage of animals with masticatory muscle myositis has circulating autoantibodies?
 a. 50%
 b. 28%
 c. 85%
 d. 100%

4. The clinical presentation of patients with acute masticatory muscle myositis may include
 a. painful, swollen masticatory muscles.
 b. exophthalmos.
 c. submandibular and prescapular lymphadenopathy.
 d. all of the above

5. The predominant cellular infiltrate on biopsy specimens is
 a. lymphocytic or plasmacytic.
 b. macrophages.
 c. eosinophils.
 d. neutrophils.

6. CK levels are generally
 a. more elevated with polymyositis compared with masticatory muscle myositis.
 b. more elevated with masticatory muscle myositis compared with polymyositis.
 c. elevated in the acute and chronic phase.
 d. not of clinical assistance.

7. The initial immunosuppressive dose of prednisone recommended during the acute phase is
 a. 1 mg/kg/day PO.
 b. 0.25 mg/kg PO bid.
 c. 2 mg/kg PO bid.
 d. 0.5 mg/kg PO bid.

8. Therapeutic failure when treating masticatory muscle myositis is generally due to
 a. an inadequate steroid dose.
 b. an inadequate duration of immunosuppressive therapy.
 c. failure to treat during the acute phase.
 d. all of the above

9. A negative result using the 2M antibody test is generally not due to
 a. poor sensitivity and specificity.
 b. previous use of immunosuppressive therapy before testing.
 c. end-stage disease.
 d. polymyositis.

10. Additional therapy for patients with masticatory muscle myositis should not include
 a. gruel diets.
 b. manual retraction of the jaw.
 c. chew toys.
 d. managing side effects associated with long-term prednisone therapy, such as urinary tract infections.